Elektrotehnicki fakultet u Beogradu
Katedra za ra¢unarsku tehniku i1 informatiku

Predmet: Programski prevodioci 1
Nastavnik: dr Dragan Boji¢, redovni profesor
Asistenti: doc. dr Maja Vukasovi¢,
mast. inZ. Mihajlo Ogrizovi¢,
mast. inZ. Luka Hrvacevié¢
Skolska: — 2025/2026.
Ispitni rok: Januarsko-februarski ispitni rok
Datum: 31.12.2025.

Projekat

— Kompajler za Mikrojavu —

Vazne napomene: Pre Citanja ovog teksta, obavezno procitati opsta pravila predmeta i pravila vezana
za izradu domacih zadataka! Procitati potom ovaj tekst u celini i paZzljivo, pre zapocinjanja realizacije
ili trazenja pomo¢i. Ukoliko u zadatku neSto nije dovoljno precizno definisano ili su postavljeni
kontradiktorni zahtevi, moze se koristiti diskusiona lista za razjaSnjavanje nejasnoc¢a u zahtevima, van
onoga sto se moze samostalno resiti uvodenjem razumnih pretpostavki. Sreé¢an rad!

1/12

1. Uvod

Cil]j projektnog zadatka je realizacija kompajlera za programski jezik Mikrojavu. Kompajler
omogucava prevodjenje sintaksno i semanticki ispravnih Mikrojava programa u Mikrojava bajtkod
koji se izvrSava na virtuelnoj masini za Mikrojavu. Sintaksno i semanticki ispravni Mikrojava
programi su definisani specifikacijom [MJ].

Programski prevodilac za Mikrojavu ima cetiri osnovne funkcionalnosti: leksicku analizu,
sintaksnu analizu, semanticku analizu i generisanje koda.

Leksicki analizator treba da prepoznaje jezicke lekseme i vrati skup tokena izdvojenih iz
izvornog koda, koji se dalje razmatraju u okviru sintaksne analize. Ukoliko se tokom leksicke
analize detektuje leksiCka greska, potrebno je ispisati odgovarajucu poruku na izlaz.

Sintaksni analizator ima zadatak da utvrdi da li izdvojeni tokeni iz izvornog koda programa
mogu formiraju gramaticki ispravne sentence. Tokom parsiranja Mikrojava programa potrebno je
na odgovaraju¢i nacin omoguditi i pradenje samog procesa parsiranja na nacin koji ¢e biti u
nastavku dokumenta detaljno opisan. Nakon parsiranja sintaksno ispravnih Mikrojava programa
potrebno je obavestiti korisnika o uspesnosti parsiranja. Ukoliko izvorni kod ima sintaksne greske,
potrebno je izdati adekvatno objaSnjenje o detektovanoj sintaksnoj gresci, izvrSiti oporavak i
nastaviti parsiranje.

Semanticki analizator se formira na osnovu apstraktnog sintaksnog stabla koje je nastalo kao
rezultat sintaksne analize. Semantic¢ka analiza se sprovodi implementacijom metoda za poseéivanje
¢vorova apstraktnog sintaksnog stabla. Stablo je formirano na osnovu gramatike implementirane u
prethodnoj fazi. Ukoliko izvorni kod ima semanti¢ke greske, potrebno je prikazati adekvatnu
poruku o detektovanoj semantickoj gresci.

Generator koda prevodi sintaksno i semantic¢ki ispravne programe u izvrSni oblik za
odabrano izvr§no okruZenje Mikrojava VM. Generisanje koda se implementira na slican nacin kao 1
semanticka analiza, implementacijom metoda koje posecuju ¢vorove.

Svi relevantni pomo¢ni materijali za izradu projekta se mogu pronaci na sajtu predmeta ili u
okviru sekcije Prilog ovog dokumenta.

Projektni zahtevi su razvstani po tezini i obimu na 3 nivoa: Nivo A (20 poena), Nivo B (30
poena), Nivo C (40 poena). U sekciji V funkcionalnosti su detaljno podeljene po nivoima.

Odbranjen projekat je uslov za izlazak na ispit. Projekat je odbranjen ukoliko student na
odbrani osvoji najmanje 20 poena, odnosno ukoliko implementira sve funkcionalnosti predvidene
bar za Nivo A. U sekciji VI je detaljno opisano bodovanje projekata.

2. Reference

[MJ] Specifikacija jezika Mikrojava prilagodena postavci zadatka,
http://irdppl.etf.rs/Domaci/mikrojava_2025 2026 jan.pdf

[PT] Sablon projekta podesen za integrisano razvojno okruZenje Eclipse,
http://irdppl.etf.rs/Domaci/2017-2018/ppllab.template AST.zip

2/12

http://ir4pp1.etf.rs/Domaci/mikrojava_2025_2026_jan.pdf
http://ir4pp1.etf.rs/Domaci/2017-2018/pp1lab.templateAST.zip

3.

Specifikacija zahteva

Leksicka analiza

U nastavku teksta su navedeni i opisani projektni zahtevi za implementaciju leksickog analizatora.

X/
°

X/
°

X/
°

%

X/
°

X3

A

e

S

X/
°

X3

%

Potrebno je realizovati leksicki analizator (skener) izvornih programa napisanih na jeziku
Mikrojava.

Leksicki analizator se implementira pisanjem .flex specifikacije, ¢iji format je detljano opisan u
prezentacijama primera domacih zadataka sa sajta predmeta.

Specifikacija leksickog analizatora mora da se smesti u fajl [PT]/src/spec/mjlexer.flex.
Specifikacija .flex se transformiSe u implementaciju leksera na programskom jeziku Java
koris¢enjem alata JFlex sa sajta predmeta.

Generisana klasa leksickog analizatora mora da pripada paketu rs.ac.bg.etf.ppl u okviru
direktorijuma [PT]/src.

Interfejs leksickog analizatora prema sintaksnom analizatoru mora biti standardni CUP interfejs.
Za vise informacija, pogledati primer mini domacéeg u vezbama na sajtu predmeta.

Skener prihvata fajl za izvornim kodom na jeziku Mikrojava i deli ga na tokene.

Token se vraca eksplicitnim pozivom leksickog analizatora (operacija next token()).
Potrebno je detektovati i obraditi sledece leksicke strukture:

— identifikatore,

— konstante,

— kljuéne reci,

— operatore,

— komentare.

Leksicke strukture implementirati prema specifikaciji jezika [MJI§A.2p3].

Leksicki analizator treba da preskace komentare 1 "beline" u tekstu programa.

Pod "belinama" se smatraju: tabulatori (\t), prelazak u novi red (\r \n), razmak (' '), backspace
(\b), prelazak na novu stranu (\f, form feed).

U slucaju leksicke greske, ispisuje se greska i nastavlja se obrada teksta programa.

Poruka o gresci treba da sadrzi sledece informacije:

— niz znakova koji nije prepoznat,

— broj linije teksta programa u kojoj se desila greska, 1

— kolonu (poziciju prvog znaka) u kojoj je detektovana greska.

Obavezno je koris¢enje jdk 1.8 kao §to je opisano u primerima na veZzbama.

Sintaksna analiza

Potrebno je napisati LALR(1) gramatiku na osnovu specifikacije jezika i1 implementirati

sintaksni analizator (parser) za programe napisane na jeziku Mikrojava.

Opsti tehnicki zahtevi

R/
L X4

R/
L X4

K/
L X4

3

S

Gramatika jezika Mikrojava mora biti napisana u skladu sa specifikacijom jezika definisanom u
[MJ].

Za implementaciju parsera mora se koristiti generator sintaksnih analizatora AST-CUP (u
nastavku teksta: AST-CUP generator). AST-CUP generator je lokalno razvijeno proSirenje alata
CUP za rad sa sintaksnim stablima.

Mora se koristiti instalacija alata isklju¢ivo sa sajta predmeta (biblioteka cup v10k.jar).
Gramaticka specifikacija parsera mora biti napisana u CUP fajlu, u formatu koji AST-CUP
generator prepoznaje (u nastavku teksta: AST-CUP specifikacija).

AST-CUP specifikacija mora da se smestu u fajl [PT]/src/spec/mjparser.cup.

3/12

Sintaksni analizator mora biti integrisan sa CUP kompatibilnim leksi¢kim analizatorom za jezik
Mikrojava.

U slucaju uspesnog parsiranja ulaznog fajla parser na kraju rada na standardnom izlazu
prikazuje apstraktno sintaksno stablo pozivom funkcije toString() nad korenom stabla (videti
primer mini domaceg).

Parser treba da omoguci oporavak od sintaksnih gresaka za zadate jezicke elemente.

U sluc¢aju nailaska na sintaksnu gresku parser:

— ispisuje poruku greske u log fajl,

— vrsi oporavak od greske 1

— nastavlja sa parsiranjem ostatka fajla.

Opis sintaksne greSke TREBA da sadrzi:

— broj linije ulaznog programa u kojoj je greska detektovana (videti realizaciju u primeru mini
domaceg sa sajta predmeta),

—nedvosmislen opis greske.

Implementacija parsera

)/
A X4

R/
L4

X/
°

X/
°

Nije dozvoljeno koristiti opciju precedence u .cup fajlu za definisanje prioriteta operatora.
Izuzetak je koriS¢enje direktive precedence left ELSE; koja se moze koristiti da se razresi
konflikt izmedu smena za if iskaz (statement) sa else delom i if iskaz bez else dela.

Neterminali u AST-CUP specifikaciji moraju biti imenovani na nacin kako je to propisano
zadatom specifikacijom [MJ] uz eventualno dodavanje sopstvenih neterminale, ukoliko se za
tim ukaze potreba.

Svakoj produkciji mora se zadati jedinstveni naziv na osnovu kojeg AST-CUP generator
generiSe Java klasu koja reprezentuje deo podstabla koji odgovara toj produkciji.

Na osnovu AST-CUP specifikacije AST-CUP generator proizvodi standardnu CUP
specifikaciju i geneiSe klase elemenata sintaksnog stabla.

Dobijena CUP specifikacija mora biti smeStena u fajl [PT]/src/spec/mjparser astbuild.cup.
Generisane klase apstr. sint. stabla moraju biti smeStene u paket rs.ac.bg.etf.ppl.ast u okviru
direktorijuma [PT]/src.

Uz izuzetak prijave sintaksnih greSaka, nije dozvoljeno ubacivati nikakve druge akcije u AST-
CUP specifikaciju parsera {: :}.

Dozvoljeno je dodavati usluzne metode ili polja u code {: :} sekciju AST-CUP specifikacije
parsera iskljucivo za prijavljivanje i/ili oporavak od sinktasnih greSaka.

Napisati klasu rs.ac.bg.etf.ppl.Compiler na programskom jeziku Java sa funkcijom glavnog
programa main koja pokrece parsiranje Mikrojava programa. U slu¢aju uspeSnog parsiranja,
ispisuje strukturu sintaksnog stabla kako je opisano u zahtevima.

Putanja do ulaznog fajla sa Mikrojava izvornim kodom prosleduje se glavnom programu klase
Compiler kao prvi argument komandne linije.

Oporavak od gresaka

K/
L X4

U AST-CUP specifikaciju gramatike TREBA dodati smene 1 akcije za oporavak od greSaka.
Implementirati oporavak od greSaka za sledece jeziCke elemente:

NIVO A:

— definicija globalne promenljive — ignorisati karaktere do prvog znaka ";" ili slede¢eg ","
— konstrukcija iskaza dodele — ignorisati karaktere do ";"

NIVO B(podrazumeva i elemente iz nivoa A):

— deklaracija formalnog parametra funkcije — ignorisati znakove do znaka "," ili ")"

— logicki izraz unutar if konstrukcije - ignorisati karaktere do prvog znaka ")"

NIVO C(podrazumeva i elemente iz nivoa B):

— deklaracija polja unutrasnje klase — ignorisati karaktere do prvog ";" ili "{"

— deklaracija proSirenja natklase — ignorisati znakove do prvog znaka "{".

4/12

Testiranje rada implementiranog parsera:
% Napisati reprezentativni skup testova sintaksno ispravnih i neispravnih programa i testirati
oporavak od gresaka.

Il Semanticka analiza

U sklopu semantic¢ke analize vrsi se azuriranje tabele simbola i provera kontekstnih uslova
opisanih u [MJ].

Opsti zahtevi

¢ Semanticka analiza se vrsi obilaskom apstraktnog sintaksnog stabla koje je nastalo kao rezultat
sintaksne analize.

¢ Potrebno je implementirati klasu SemanticAnalyzer koja prosiruje automatski generisanu klasu
rs.ac.bg.etf.ppl.ast.VisitorAdapter 1 u njoj redefinisati metode za obilazak onih ¢vorova stabla
koji su relevatni za semanticku analizu.

+ Klasa SemanticAnalyzer mora biti smeStena u paket rs.ac.bg.etf.ppl.

% Nije dozvoljeno dodavati nikakve semanticke akcije u AST-CUP sepecifikaciju parsera {: :},
niti klasi parsera dodavati metode niti polja koja obavljaju ili neposredno ili posredno uti¢u na
semanticku analizu.

* Semanticki obilazak stabla se pokrece u funkciji glavnog programa klase Compiler nakon
zavrSetka sintaksne analize, tako Sto se objekat klase SemanticAnalyzer prosleduje korenu
sintaksnog stabla.

¢ Semanticki analizator je potrebno integrisati sa tabelom simbola.

¢ Mora se koristiti implementacija tabele simbola dostupna na sajtu predmeta:
http://ir4pp1.etf.rs/Domaci/symboltable-1-1.jar.

« Tabela simbola se uvezuje sa ostatkom programa kao Java biblioteka (.jar) i dozvoljeno je
koristiti sve njene javne klase, metode i1 polja. Uz biblioteku se dostavlja i izvorni kod koji je
predviden samo za informisanje o detaljima implementacije 1 njihovo razumevanje.

* NIJE DOZVOLIJENO raspakivati biblioteku tabele simbola, menjati njenu implementaciju 1
ponovo je prevoditi i uvezivati sa projektom.

¢ Ukoliko postoje¢a implementacija tabele simbola ne zadovoljava sve zahteve iz date
specifikacije, moZe se nadograditi ISKLJUCIVO pomoéu izvodenja klasa i redefinisanja
postojecih metoda. Tabela simbola ima nekoliko tacaka za proSirenja.

« Implementirati javno dostupnu metodu void tsdump() u klasi Compiler za ispis sadrzaja tabele
simbola. Metoda mora da se pozove glavnom programu klase Compiler po zavrSetku
semantickog prolaza.

Detektovanje kori§¢enja simbola
+» U klasi SemanticAnalyzer implementirati detektovanje upotrebe simbola za sledeée jezicke
elemente:
s NIVO A
— simbolicke konstante,
— globalne promenljive,
— lokalne promenljive.
* NIVO B(podrazumeva 1 elemente iz nivoa A)
— globalne funkcije (pozivi)
— pristup elementu niza
— koris$¢enje formalnog argumenta funkcije
* NIVO C(podrazumeva 1 elemente iz nivoa B)
— unutrasnje klase (pravljenje objekta)
— polja unutrasnjih klasa (pristup polju)
— metode unutrasnjih klasa (pozivi).

5/12

http://ir4pp1.etf.rs/Domaci/symboltable-1-1.jar

*»+ Za svaki detektovani simbol potrebno je proveriti sledece:
— da li ime postoji u tabeli simbola,
—da li je ispravnog tipa.

Format poruke

¢ Poruka o detektovanom simbolu MORA da sadrzi slede¢e podatke (videti Prilog 2):
— linija izvornog koda u kojoj je pronaden simbol,
— naziv pronadenog simbola,
— ispis objektnog ¢vora iz tabele simbola koji odgovara pronadenom simbolu.

Provera kontekstnih uslova
« U klasi SemanticAnalyzer implementirati proveru svih kontekstnih uslova navedenih u
specifikaciji [MJ§A.4p5], a predvidenih za odabrani nivo tezine.

Testiranja rada implementiranog semantickog analizatora:

¢ Napisati ulazne fajlove na programskom jeziku Mikrojava koji sadrze sve sintaksno i semanticki
ispravne MJ programe uz pokrivanje svih smena iz gramatike.

+ Napisati ulazne fajlove na programskom jeziku Mikrojava koji sadrze sve kombinacije
semantickih gresaka.

IV Generisanje koda

Generisanje koda podrazumeva transformaciju sintaksno i semanticki ispravnog sintaksnog
stabla u bajtkod za izvr$no okruzenje za MJ virtuelnu masinu (MJVM).

Opsti zahtevi

% Generisanje koda vrsi se obilaskom apstraktnog sintaksnog stabla koje je nastalo kao rezultat
sintaksne analize 1 zadovoljilo uslove semanti¢ke provere.

¢ Potrebno je implementirati klasu rs.ac.bg.etf.ppl.CodeGenerator, koja proSiruje automatski
generisanu klasu rs.ac.bg.etf.ppl.ast.VisitorAdapter, i u njoj redefinisati medote za obilazak
elemenata sintaksnog stabla koji su relevanti za generisanje koda.

¢ Nije dozvoljeno implementirati generisanje koda u akcijama {: :} AST-CUP specifikacije

parsera, niti klasi parsera dodavati metode niti polja koja obavljaju ili posredno ili neposredno

uticu na generisanje koda.

Generator koda mora da generiSe ispravan bajtkod za MJVM.

Za implementaciju generatora koda moraju se koristiti alati Code, disasm 1 Run. dostupni 1

biblioteci mj-runtime.jar: http://ir4pp1.etf.rs/Domaci/mj-runtime-1.1.jar

Generisanje koda se pokre¢e u glavnom programu klase Compiler po zavrSetku semanticke

analize 1 ispisa sadrzaja tabele simbola. Implementira se prosledivanjem objekta klase

CodeGenerator korenu sintaksnog stabla.

Izlaz generatora koda mora da bude izvrSivi .obj fajl za MJIVM.

Putanja do izlaznog .obj fajla prosleduje se glavnom programu klase Compiler kao drugi

argument komandne linije.

X3

*

X/
°

X/
°

K/
L X4

X3

*

6/12

http://ir4pp1.etf.rs/Domaci/mj-runtime-1.1.jar

V Podela funkcionalnosti po nivoima

% NIVO A - potrebno je implementirati generisanje koda za SVE gramaticke smene u nastavku
(osnovni iskazi, aritmetiCki izrazi, 1 rad sa nizovima prostih tipova, ukljucujuéi koris¢enje
ugradenog polja length):

DesignatorStatement := Designator "=" Expr.

DesignatorStatement := Designator "++".

DesignatorStatement := Designator "--".

DesignatorStatement := Designator "(" [ActPars]")".

Statement := DesignatorStatement ";".

Statement := "read" "(" Designator ")" ";".

Statement := "print" "(" Expr [*,” numConst] ")" ";".

Expr :=["-"] Term {Addop Term} | CondFact "?" Expr ":" Expr.

Term := Factor {Mulop Factor}.

Factor := numConst | charConst | "(" Expr ")" | boolConst | Designator |"new" Type "[" Expr "]".
Designator :=ident ["." (ident | "length") | "["" Expr "]"]. // ident.ident samo za nabrajanja
Addop :="+"|"-".

Mulop = nin | "/H | H%H.

ActPars := Expr {"," Expr }.

% Od nizova, treba podrzati samo nizove ugradenih tipova podataka i nabrajanja. Program mora
da sadrzi funkciju main, globalne/lokalne promenljive (proste, nizovne i nabrajanja), globalne
konstante. Kod ternarnog operatora kao uslov se moZe pojaviti samo CondFact (ne treba
obradivati operatore && 1 ||).

s NIVO B - potrebno je implementirati SVE zahteve za Nivo A 1 SVE gramaticke smene u

nastavku (kontrolne strukture, uslovni izrazi, pozivi globalnih metoda):

DesignatorStatement := Designator "(" [ActPars]")" .
Statement := "switch" "(" Expr ")" "{" {"case" numConst ":" {Statement} } "}".
Statement :="if" "(" Condition ")" Statement ["else" Statement].
Statement := "break" ";".
Statement := "continue" ";".
Statement := "return" [Expr] ";".
Statement := "for" "(" [DesignatorStatement]| ";" [Condition] ";" [DesignatorStatement| ")"
Statement
Statement :="{" {Statement} "}".
Condition := CondTerm { "||" CondTerm }.
CondTerm := CondFact { "&&" CondFact }.
CondFact = Expr [Relop Expr].
Factor := Designator ["(" [ActPars] ")"].

% Nivo C — potrebno je implementirati SVE zahteve za Nivo B i jo§ dodatno zahteve u nastavku
(unutrasnje klase, supstitucija, polimorfizam):

- implementirati nasledivanje klasa;

- implementirati supstituciju (na mestu gde se o€ekuje referenca na osnovnu klasu ili apstraktnu
klasu moze se predati referenca na objekat izvedene klase);

- implementirati pravljenje objekata klasa i nizova objekata klasa;

- implementirati pravljenje tabela virtuelnih funkcija;

7/12

- implementirati polimorfno pozivanje metoda klasa;
- implementirati apstraktne klase sa podrSkom za apstraktne metode;

VI Ocenjivanje domacih zadataka

Opsti zahtevi

)/
A X4

Generisanje koda, koje proizvodi ispravne izvrSne bajtkod (predmetne) fajlove u skladu sa
opisanim zahtevima, je POTREBAN i DOVOLJAN uslov za izlazak na odbranu domaceg
zadatka.

Na odbrani se ocenjuju FUNKCIONALNOSTI kompajlera, koje su opisane u specifikaciji
jezika [MJ].

FUNKCIONALNOST je izvrSiva jedinica kompajlera koja odgovaraju¢u naredbu, izraz ili
definiciju prevodi u izvrsne bajtkod instrukcije ili podatke zaglavlja predmetnog (obj) fajla.
Mora biti implementirana na sva Cetiri nivoa (leksika, sintaksa, semantika i generisanje koda ili
podataka zaglavlja predmetnog fajla).

Bodovanje projekta

Projekat se boduje prema cenovniku za Nivo A, akko su ispunjeni SVI zahtevi predvideni za
Nivo A. Broj poena predviden za Nivo A je 20.

Projekat se boduje prema cenovniku za Nivo B, akko ispunjava SVE zahteve za Nivo A i SVE
zahteve propisane za Nivo B. Broj poena predviden za Nivo B je 30.

Projekat se boduje prema cenovniku za Nivo C, akko ispunjava SVE zahteve predvidene za
Nivo B i SVE funkcionalnosti predvidene za Nivo C. Broj poena predviden za Nivo C je 40.
Ukoliko student ne implementira SVE funkcionalnosti za Nivo A, projekat nece biti razmatran
na odbrani.

VIl Primer programa:

program Program

abstract class A{int x[],y[]; abstract int getValue(int a);}
const int pi = 3, e = 2;
enum Broj { NULA, TRI = 3, PET = 5}
int a, b;
class B extends A {
int 1i;

{
int getValue (int a) int b; bool c¢;{ return this.i + this.x[0] + a; }
void m()int a; {}
}
}
}
class C extends B{A theA;int a;}

void main() A a; C c¢; int 1i; int x[]; char ch; {
a = new A;
a.x = new int[5]; a.y = new int[5];
c = new Cj;

c.theA = a; c.x = new int[Broj.PET];
x = new int[Broj.TRI];
read(c.i);

for(i = 0; i<x.length; i++){ read(c.x[i]); read(c.theA.x[i]); }
read(ch) ;

print(ch == 'e’ 2?2 e : pi);

print (c.getValue(c.theA.x[0]));

c.m();

8/12

4. Napomene u vezi sa izradom i odbranom
resenja

Elementi reSenja su slede¢i:
a) Propratna dokumentacija u obliku Word dokumenta MJProjekat.docx koji treba da se nalazi u
korenom direktorijumu resenja i da sadrzi:
b) naslovnu stranu,
c) kratak opis postavke zadatka od nekoliko recenica,
d) opis komandi za generisanje java koda alatima, prevodenje koda kompajlerom, pokretanje i
testiranje resenja,
e) kratak opis priloZenih test primera (ne ukljucivati ulaze niti izlaze testiranja u izvestaj).
f) kratak opis novouvedenih klasa.
Izvorni i prevedeni programski kod mora da sledi direktorijumsku strukturu koja je odredena
u Sablonu projekta [PT]. Dakle moraju se poslati .flex i .cup fajlovi, svi izgenerisani i rukom pisani
Jjava fajlovi koji ¢ine reSenje i odgovarajuci prevedeni .class fajlovi. ReSenje treba da sadrzi i .jar
arhive alata AST-CUP i Flex.
3. U posebnom folderu test treba da se nalaze svi ulazni test fajlovi sa ekstenzijom .MJ, kao i
odgovaraju¢i izlazni fajlovi koji su rezultat testiranja, sa istim imenom kao ulazni fajl, ali sa
ekstenzijom .out za standardni izlaz i .err za izlaz greske,. Uputstvo: Pri pokretanju programa
standardni izlaz moze se preusmeriti u fajl izlaz.out ako se na komandnoj liniji navede >izlaz.out, a
izlaz greske se preusmerava sa 2>izlaz.err.

Pravila za izradu i odbranu domacéeg zadatka
1. Domaci zadaci se rade individualno i1 brane usmeno pre ispita u prvom ispitnom roku.
Uspesna odbrana projekta je uslov za izlazak na ispit. Ukoliko se na odbrani utvrdi
nedozvoljena saradnja izmedu studenata prilikom izrade domaceg, u moguce posledice
osim gubitka poena spada i trajno dobijanje negativnih poena koji ¢e biti ukljuceni u zbir za
kona¢nu ocenu.
Odbrana se organizuje posle roka predaje domaceg, prema naknadnom obaveStenju. Radovi se
predaju preko specijalne veb forme. Zadaci ne mogu da se brane na sopstvenom racunaru.
Po potrebi ¢e ulazni test fajlovi biti pokretani na odbrani domaceg.
2. Na odbrani ¢e, pored samog resenja, biti proveravano i poznavanje rada sa
alatima jflex, AST-CUP zadavanjem modifikacije projekta koju treba realizovati
na licu mesta. Postoje posebne modifikacije za sve nivoe.
3. Kompletni poeni za odredeni nivo se osvajaju ako za predati projekat
uspesno prolaze javni i dodatni testovi 1 ako je uradena korektna i kompletna
modifikacija za taj nivo.
4. Na odbrani je moguce osvojiti parcijalne bodove ako je projekat raden za B
ili C nivoe (prolaze javni testovi za nivo B, odnosno C) i odradena je
modifikacija za nivo A, pri ¢emu se osvaja 25 poena, ili ako je projekat raden
za C nivo (Javni testovi za C nivo rade) 1 odradena je modifikacija za nivo B,
pri ¢emu se osvaja 35 poena.

VAZNO
Studenti su duzni da svoje zadatke testiraju na racunarima u laboratoriji pre dana odbrane,
ukoliko nisu potpuno sigurni da im je reSenje prenosivo na drugi ra¢unar. Na odbrani se zadatak
isklju¢ivo brani. Nije dozvoljena nikakva dorada, osim ako to ne bude zahtevala osoba zaduZena
za ispitivanje na odbrani.

9/12

5. Prilog

Prilog 1 — Transformisanje gramatike

2 U slucaju da je potrebno napisati smenu u kojoj se neki
pojam ponavlja jednom ili viSe puta, odgovaraju¢a smena se
moze uraditi na sledeé¢i nacin:

Parameter list — Parameter list Parameter | Parameter

Gde je Parameter_list neterminal koji opisuje jedno ili viSe pojavljivanja objekta Parameter, dok je
Parameter objekat koji treba da se ponavlja jednom ili vise puta.

2 U slucaju da se grupa razli€itih objektat pojavljuje jednom
ili viSe puta moze se koristiti sledeci oblik smene:

Parameter list — Parameter list Parameter part | Parameter part
Parameter part — Parameter] | Parameter2 | Parameter3 | ...

Gde su Parameter1, Parameter2, ... Tipovi objekata iz grupe koji se pojavljuju jednom ili vise puta.
3 U slucaju da se neki objekat opciono pojavljuje u nekoj
smeni smena se razdvaja na dve smene. Prvu koja ima
traZeni objekat i drugu koja ga ne sadrzi. Primer takve
smene je:

Funkcija — ImeFunkcije (Parameter list) | ImeFunkcije ()

Druga varijanta je da se uvede prazna smena (za prazne smene u CUPu samo na mestu gde bi
stajala desna strana smene napisati komentar /* epsilon */).

3 U slucaju da se neki objekat moZe ponavljati nula ili vise

puta u nekoj smeni koristi se kombinacija pravila iz tacki 1.
I2.

Funkcija — Ime (Parameter list) | Ime ()
Parameter list — Parameter list Parameter | Parameter

U prikazanoj smeni parametri funkcije se mogu pojaviti jednom ili vi§e puta ali i ne moraju.
Druga varijanta bi bila:

Funkcija — Ime (Parameter list)
Parameter list — Parameter list Parameter | /* epsilon */

Ova varijanta ima tu prednost da se ne multipliciraju smene za neterminal Funkcija.

10/12

Prilog 2 - Primeri izlaza
Ulazni program:

class P
const int size = 10;
int pos|[];
{
void main ()
int x, 1i;
char x;
{ //=-====== Initialize val

new int[size];

while (i < size) {
pos[i] = 0;
i++;

/=== Read values
read (x) ;
while (x >= 0) {
if (x < size) {
pos [x]++;
}

read (x) ;

}

Referentni izlaz kompajlera za navedeni program je dat u nastavku. Prijave greSaka (prikazano
podebljano) treba da idu na standardni izlaz greske, ostalo na standarni izlaz.

Napomena: Primer je ilustrativnog karaktera namenjen prikazivanju akcija pretrage i obrade
greSaka kao §to je navedeno u postavci projekta i ne mora odgovarati sintaksnim zahtevima
postavke.

SEMANTICKA OBRADA
Greska na 7: x vec deklarisano
Pretraga na 9(x), nadjeno Var x: int, 0, 1

Greska na 9(i) nije nadjeno

Pretraga na 10(pos), nadjeno Var pos: Arr of int, 0, 1
Pretraga na 10(size), nadjeno Con size: int, 10, 1
Pretraga na 11(i), nadjeno Var i: int, 0, 1

Pretraga na 12(i), nadjeno Var i: int, 0, 1

Pretraga na 12 (size), nadjeno Con size: int, 10, 1
Pretraga na 13 (pos), nadjeno Var pos: Arr of int, 0, 1
Pretraga na 13(i), nadjeno Var i: int, 0, 1

Pretraga na 14(i), nadjeno Var i: int, 0, 1
Pretraga na 17(x), nadjeno Var x: int, 0, 1
Pretraga na 18(x), nadjeno Var x: int, 0, 1

Pretraga na 19(x), nadjeno Var x: int, 0, 1

Pretraga na 19(size), nadjeno Con size: int, 10, 1
Pretraga na 20 (pos), nadjeno Var pos: Arr of int, 0, 1
Pretraga na 20(x), nadjeno Var x: int, 0, 1

Pretraga na 22(x), nadjeno Var x: int, 0, 1

SINTAKSNA ANALIZA

classes
methods in the program
global variables
global constants
global arrays
local variables in main
3 statements in main
function calls in main
==============SADRZAJ TABELE SIMBOLA:
(Level 0)
Type int: int, 0, O
Type char: char, 0, O
Con eol: char, 10, 0
Con null: Class, 0, O
Meth chr: char, 0, 1 [Var i: int, 0, 1]
Meth ord: int, 0, 1 [Var ch: char, 0, 1]
Meth len: int, 0, 1 [Var arr: Arr of notype, 0, 1]
Prog P: notype, 0, O
[Con size: int, 10, 1]
[Var pos: Arr of int, 0, 1]
[Meth main: notype, 0, 0 [Var x: int, 0, 1][Var i: int, O, 1 1]

11/12

N WR P OR P

6. Zapisnik revizija

Ovaj zapisnik sadrzi spisak izmena i dopuna ovog dokumenta po verzijama.

Verzija 1.1

Strana Izmena

12/12

