
Dodatak A. Programski jezik MikroJava

Ovaj dodatak opisuje programski jezik MikroJava koji se koristi u praktičnom delu kursa programskih

prevodilaca (13E114PP1, 13S114PP1) na Elektrotehničkom fakultetu u Beogradu. Mikrojava je slična

Javi, ali je mnogo jednostavnija.

A.1 Opšte osobine jezika

‐ MikroJava program počinje ključnom rečju program i ima statička polja, statičke metode i unutrašnje

klase koje se mogu koristiti kao (korisnički) tipovi podataka.
‐ Glavna metoda MikroJava programa se uvek zove main(). Kada se poziva MikroJava

program izvršava se ta metoda.
‐ Postoje:

‐ Celobrojne, znakovne i logičke konstante (int, char, bool).

‐ Osnovni tipovi: int, bool, char (ASCII), nabrajanja.

‐ Promenljive: globalne (statičke), lokalne, klasne (polja).

‐ Promenljive osnovnih tipova sadrže vrednosti.

‐ Strukturirani/referencijalni tipovi: jednodimenzionalni nizovi kao u Javi, unutrašnje klase

(apstraktne i konkretne) sa poljima i metodama.
‐ Promenljive referencijalnih tipova predstavljaju reference (sadrže adrese koje se ne mogu menjati

eksplicitno).
‐ Statičke metode u programu.

‐ Statička polja klasa.
‐ Ne postoji garbage kolektor (alocirani objekti se samo dealociraju nakon kraja programa).

‐ Postoji nasleđivanje klasa i polimorfizam.

‐ Postoji redefinisanje metoda.

‐ Metode unutrašnjih klasa su vezane za instancu i imaju implicitni parametar this (referenca na

instancu klase za koju je pozvana metoda).

‐ Referenca “this“ se implicitno deklariše u metodama unutrašnjih klasa kao prvi formalni argument

tipa reference na klasu kojoj metoda pripada.

‐ Unutar metoda instance, ime polja odnosi se na polje instance trenutnog objekta, pod

pretpostavkom da polje nije skriveno parametrom metode. Ako je skriveno, možemo pristupiti polju

instance preko this.fieldName.

‐ Predeklarisane procedure su ord, chr, len.

‐ Metoda print ispisuje vrednosti svih osnovnih tipova.

‐ Od kontrolnih struktura postoji uslovno grananje (if-else), višestruko grananje (switch) i petlja (for).

Primer programa

program p

const int tableSize = 10;

enum Broj { NULA, JEDAN, TRI = 3, PET = 5}

abstract class Tab {

{

 abstract int getp (int idx);

 abstract int getn (int idx);

}

class Table extends Tab {

int pos[], neg[], factor;

{

 void setfactor(int factor) {this.factor = factor;}

void putp (int a, int idx) { this.pos[idx] = a; }

 void putn (int a, int idx) { this.neg[idx] = a; }

 int getp (int idx) { return pos[idx]; }

 int getn (int idx) { return neg[idx]; }

}

}

Table val;

int rows, columns;

{

void f(char ch, int a, int arg)

int x;

{

 x = arg;

}

void main() int x, i; char c, int[] arr;

{

 val = new Table;

 val.setfactor(2);

 arr = new int[Broj.TRI];

 i = 0;

for (i = 0; i < arr.length; i++)

 arr[i] = i;

 switch (arr[i] - 1) {

 case 0: continue;

 case 1: print('1'); break;

 case 2: print('2'); break;

 print(arr[i]);

 }

val.pos = new int [tableSize];

val.neg = new int [tableSize];

read(x);

for(i = 0; i < tableSize; i++) {

val.putp(0, i);

 val.putn(0, i);

}

f(c, x, i);

 read(rows);

for(x=rows;;){

 if(x <= 0) break;

 if (Broj.NULA <= x && x < tableSize)

 {

 val.putp(val.getp(x)+Broj.JEDAN);

 }

else if (‐tableSize < x && x < 0)
 {

 val.putn(val.getn(‐x)+1);
 }

 read(x);

 }

 print(x < 0 ? '-' : '+');

}

}

A.2 Sintaksa

Program = ʺprogramʺ ident {ConstDecl | VarDecl | ClassDecl | EnumDecl | AbstractClassDecl }

ʺ{ʺ {MethodDecl} ʺ}ʺ.

ConstDecl = ʺconstʺ Type identʺ=ʺ(numConst | charConst | boolConst) {, ident ʺ=ʺ (numConst |

charConst | boolConst)} ʺ;ʺ.
VarDecl = Type ident [ʺ[ʺ ʺ]ʺ] {ʺ,ʺ ident [ʺ[ʺ ʺ]ʺ]} ʺ;ʺ.
EnumDecl = ʺenumʺ ident ʺ{ʺ ident [ʺ=ʺ numConst] {ʺ,ʺ ident [ʺ=ʺ numConst]} ʺ}ʺ.

ClassDecl = ʺclassʺ ident [ʺextendsʺ Type] ʺ{ʺ {VarDecl} [ʺ{ʺ {MethodDecl} ʺ}ʺ] ʺ}ʺ.

AbstractClassDecl = ʺabstractʺ ʺclassʺ ident [ʺextendsʺ Type] [ʺ{ʺ {MethodDecl | AbstractMethodDecl ʺ;ʺ }] ʺ}ʺ.

AbstractMethodDecl = ʺabstractʺ (Type | ʺvoidʺ) ident ʺ(ʺ [FormPars] ʺ)ʺ.

MethodDecl = (Type | ʺvoidʺ) ident ʺ(ʺ [FormPars] ʺ)ʺ {VarDecl} ʺ{ʺ {Statement} ʺ}ʺ.
FormPars = Type ident [ʺ[ʺ ʺ]ʺ] {ʺ,ʺ Type ident [ʺ[ʺ ʺ]ʺ]}.
Type = ident.
Statement = DesignatorStatement ʺ;ʺ
 | ʺifʺ ʺ(ʺ Condition ʺ)ʺ Statement [ʺelseʺ Statement]
 | ʺbreakʺ ʺ;ʺ
 | ʺcontinueʺ ʺ;ʺ
 | ʺreturnʺ [Expr] ʺ;ʺ
 | ʺreadʺ ʺ(ʺ Designator ʺ)ʺ ʺ;ʺ
 | ʺprintʺ ʺ(ʺ Expr [ʺ,ʺ numConst] ʺ)ʺ ʺ;ʺ

| "switch" "(" Expr ")" "{" {"case" numConst ":" {Statement} } "}"
 | "for" "(" [DesignatorStatement] ";" [Condition] ";" [DesignatorStatement] ")" Statement

 | ʺ{ʺ {Statement} ʺ}ʺ.
DesignatorStatement = Designator (Assignop Expr | ʺ(ʺ [ActPars] ʺ)ʺ | ʺ++ʺ | ʺ‐‐ʺ)

ActPars = Expr {ʺ,ʺ Expr}.
Condition = CondTerm {ʺ||ʺ CondTerm}.
CondTerm = CondFact {ʺ&&ʺ CondFact}.
CondFact = Expr [Relop Expr].
Expr = [ʺ-ʺ] Term {Addop Term}

| CondFact "?" Expr ":" Expr. * za A nivo

| Contition "?" Expr ":" Expr. * za B i C nivo

Term = Factor {Mulop Factor}.
Factor = Designator [ʺ(ʺ [ActPars] ʺ)ʺ]
 | numConst
 | charConst
 | boolConst
 | ʺnewʺ Type ʺ[ʺ Expr ʺ]ʺ
 | ʺ(ʺ Expr ʺ)ʺ.
Designator = ident {ʺ.ʺ (ident | "length") | ʺ[ʺ Expr ʺ]ʺ}.
Assignop = ʺ=ʺ.

Relop = ʺ==ʺ | ʺ!=ʺ | ʺ>ʺ | ʺ>=ʺ | ʺ<ʺ | ʺ<=ʺ.
Addop = ʺ+ʺ | ʺ‐ʺ.
Mulop = ʺ*ʺ | ʺ/ʺ | ʺ%ʺ.

Leksičke Strukture
Ključne reči:

program, break, enum, class, abstract, else, const, if, new, print, read,

return, void, extends, continue, for, length, switch, case

Vrste tokena : ident = letter {letter | digit | ʺ_ʺ}.
 numConst = digit {digit}.

charConst = ʺʹʺ printableChar ʺʹʺ.

boolConst = (ʺtrueʺ | ʺfalseʺ).

Operatori: +, ‐, *, /, %, ==, !=, >, >=, <, <=, &&, ||, =, ++, ‐‐, ;, :, zarez, ., (,), [,], {, }
Komentari: // do kraja linije

A.3 Semantika

Svi pojmovi u ovom dokumentu, koji imaju definiciju, su podvučeni da bi se naglasilo njihovo posebno

značenje. Definicije tih pojmova su date u nastavku.

Tip reference
Nizovi i klase su tipa reference.

Tip konstante
‐ Tip celobrojne konstante (npr. 17) je int.
‐ Tip znakovne konstante (npr. ʹxʹ) je char.

‐ Tip logičke konstante (npr. true) je bool.

Ekvivalentni tipovi podataka
Dva tipa podataka su ekvivalentna
‐ ako imaju isto ime, ili
‐ ako su oba nizovi, a tipovi njihovih elemenata su ekvivalentni.

Kompatibilni tipova podataka
Dva tipa podataka su kompatibilna
‐ ako su ekvivalentni, ili
‐ ako je jedan od njih tip reference, a drugi je tipa null.

Kompatibilnost tipova podataka pri dodeli
Tip src je kompatibilan pri dodeli sa tipom dst
‐ ako su src i dst ekvivalentni,

‐ ako je dst tip reference, a src je tipa null.

‐ ako je dst referenca na osnovnu klasu, a src referenca na izvedenu klasu

Predeklarisana imena

int tip svih celobrojnih vrednosti

char tip svih znakovnih vrednosti

bool logički tip

length polje koje vraća dužinu niza
null null vrednost promenljive tipa klase ili (znakovnog) niza simbolički označava referencu koja

ne pokazuje ni na jedan podatak
eol - kraj reda karaktera (odgovara znaku ʹ\nʹ); print(eol) vrši prelazak u novi red

chr - standardna metoda; chr(i) vrši konverziju celobrojnog izraza i u karakter (char)
ord - standardna metoda; ord(ch) vrši konverziju karaktera ch u celobrojnu vrednost (int)

Opseg važenja
Opseg važenja (scope) predstavlja tekstualni doseg metode ili klase. Prostire se od početka definicije

metode ili klase do zatvorene velike zagrade na kraju te definicije. Opseg važenja ne uključuje imena

koja su deklarisana u opsezima koji su leksički ugnježdeni unutar njega. U opsegu se “vide” imena

deklarisana unutar njega i svih njemu spoljašnjih opsega. Pretpostavka je da postoji veštački globalni

opseg (universe), za koji je glavni program lokalan i koji sadrži sva predeklarisana imena.
Deklaracija imena u unutrašnjem opsegu S sakriva deklaraciju istog imena u spoljašnjem opsegu.
Napomena
• Indirektna rekurzija nije dozvoljena i svako ime mora biti deklarisano pre prvog korišćenja.
• Predeklarisana imena (npr. int ili char) mogu biti redeklarisani u unutrašnjem opsegu (ali to nije

preporučljivo).

A.4 Kontekstni uslovi

Opšti kontekstni uslovi
• Svako ime u programu mora biti deklarisano pre prvog korišćenja.
• Ime ne sme biti deklarisano više puta unutar istog opsega.
• U programu mora postojati metoda sa imenom main. Ona mora biti deklarisana kao void metoda

bez argumenata.

Kontekstni uslovi za standardne metode

chr(e); e mora biti izraz tipa int.

ord(c); c mora biti tipa char.

len(a); a mora biti niz ili znakovni niz.

Kontekstni uslovi za MikroJava smene

Program = ʺprogramʺ ident { ConstDecl | VarDecl | ClassDecl | EnumDecl | AbstractClassDecl }

ʺ{ʺ {MethodDecl} ʺ}ʺ.

ConstDecl = ʺconstʺ Type ident ʺ=ʺ (numConst | charConst | boolConst) ʺ;ʺ.
• Tip terminala numConst, charConst ili boolConst mora biti ekvivalentan tipu Type.

EnumDecl = ʺenumʺ ident ʺ{ʺ ident [ʺ=ʺ numConst] {ʺ,ʺ ident [ʺ=ʺ numConst]} ʺ}ʺ.
• Svaka konstanta nabrajanja je tipa int.

• Svakoj od mogućih konstanti koje se definišu u okviru nabrajanja dodeljuje se celobrojna vrednost

koja mora biti jednistvena u okviru jednog nabrajanja. U odsustvu eksplicitno navedene vrednosti

konstanta dobija vrednost prethodne konstante uvećanu za 1. U slučaju da prethodna konstanta ne

postoji dodeljuje se vrednost 0.

• Konstanti nabrajanja se obavezno pristupa uz navodjenje identifikatora nabrajanja. (Primer:

IdentifikatorNabrajanja.Konstanta)

VarDecl = Type ident [ʺ[ʺ ʺ]ʺ] {ʺ,ʺ ident [ʺ[ʺ ʺ]ʺ]} ʺ;ʺ.

ClassDecl = ʺclassʺ ident [ʺextendsʺ Type] ʺ{ʺ {VarDecl} [ʺ{ʺ {MethodDecl} ʺ}ʺ] ʺ}ʺ.

• Tip Type prilikom izvođenja klase iz druge klase mora biti unutrašnja klasa glavnog programa.

• Klasa koja nije apstraktna ne sme sadržati apstraktne metode.

• Ukoliko klasa koja nije apstraktna nasleđuje apstraktnu klasu, mora implementirati sve apstraktne

metode.

AbstractClassDecl = ʺabstractʺ ʺclassʺ ident [ʺextendsʺ Type] [ʺ{ʺ {MethodDecl |

AbstractMethodDecl ʺ;ʺ }] ʺ}ʺ.

• Apstraktna klasa može nasleđivati neku drugu apstraktnu ili klasu koja nije apstraktna.

• Apstraktna klasa se ne može instancirati.

MethodDecl = (Type | ʺvoidʺ) ident ʺ(ʺ [FormPars] ʺ)ʺ {VarDecl} ʺ{ʺ {Statement} ʺ}ʺ.
• Ako metoda nije tipa void, mora imati iskaz return unutar svog tela (uslov treba da se proverava u

vreme izvršavanja programa).

• Globalne funkcije nemaju implicitan parametar this.

AbstractMethodDecl = ʺabstractʺ (Type | ʺvoidʺ) ident ʺ(ʺ [FormPars] ʺ)ʺ.

FormPars = Type ident [ʺ[ʺ ʺ]ʺ] {ʺ,ʺ Type ident [ʺ[ʺ ʺ]ʺ]}.

Type = ident.
• ident mora označavati tip podataka.

Statement = DesignatorStatement ʺ;ʺ.

DesignatorStatement = Designator Assignop Expr ʺ;ʺ.
• Designator mora označavati promenljivu, element niza ili polje unutar objekta.
• Tip neterminala Expr mora biti kompatibilan pri dodeli sa tipom neterminala Designator.

DesignatorStatement = Designator (ʺ++ʺ | ʺ‐‐ʺ) ʺ;ʺ.
• Designator mora označavati promenljivu, element niza ili polje objekta unutrašnje klase.
• Designator mora biti tipa int.

DesignatorStatement = Designator ʺ(ʺ [ActPars] ʺ)ʺ ʺ;ʺ.
• Designator mora označavati nestatičku metodu unutrašnje klase ili globalnu funkciju glavnog

programa.

Statement = ʺbreakʺ.
• Iskaz break se može koristiti samo unutar for petlje i višestrukog grananja (switch). Prekida

izvršavanje neposredno okružujuće petlje ili case grane višestrukog grananja (izlazi se iz switch-a).

Statement = ʺcontinueʺ.
• Iskaz continue se može koristiti samo unutar for petlje. Prekida tekuću iteraciju neposredno

okružujuće petlje.

Statement = ʺreadʺ ʺ(ʺ Designator ʺ)ʺ ʺ;ʺ.
• Designator mora označavati promenljivu, element niza ili polje unutar objekta.
• Designator mora biti tipa int, char ili bool.

Statement = ʺprintʺ ʺ(ʺ Expr [ʺ,ʺ numConst] ʺ)ʺ ʺ;ʺ.
• Expr mora biti tipa int, char ili bool.

Statement = ʺreturnʺ [Expr] .
• Tip neterminala Expr mora biti ekvivalentan povratnom tipu tekuće metode/ globalne funkcije.
• Ako neterminal Expr nedostaje, tekuća metoda mora biti deklarisana kao void.

• Ne sme postojati izvan tela metoda, odnosno globalnih funkcija.

Statement = ʺifʺ ʺ(ʺ Condition ʺ)ʺ Statement [ʺelseʺ Statement].
• Naredba if – ukoliko je vrednost uslovnog izraza Condition true, izvršavaju se naredbe u if grani, u

suprotnom izvršavaju se naredbe u else grani, ako je navedena.

• Tip uslovnog izraza Condition mora biti bool.

Statement = "switch" "(" Expr ")" "{" {"case" numConst ":" {Statement} } "}".
• Expr mora biti celobrojnog tipa.

• Ne sme postojati više case grana sa istom celobrojnom konstantom.

• Case grane se proveravaju u redosledu navođenja. Kada se naiđe na case granu čija celobrojna

konstanta odgovara vrednosti Expr započinje se izvršavanje koda.

• Ukoliko se na kraju case grane ne nalazi break naredba, bezuslovno se nastavlja sa izvršavanjem

koda u narednoj case grani.

• Ne postoji default grana.

• break naredba prekida izvršavanje tekuće case grane i napušta switch.

• continue naredba nema dejstvo na switch, te se u switch-u može naći samo ukoliko je on ugnježden

u petlju i u tom slučaju deluje na okružujuću petlju.

Statement = "for" "(" [DesignatorStatement] ";" [Condition] ";" [DesignatorStatement] ")"

Statement.

• Uslovni izraz Condition mora biti tipa bool. •
• Ako je navedena, prvo se izvršava naredba opisana prvim neterminalom DesignatorStatement, i to

samo jednom (nije deo cikličnog izvršavanja)

• Na početku svake iteracije proverava vrednost uslovnog izraza. Ukoliko ne postoji, podrazumeva

se true. Vrednost true omogućava izvršavanje tela petlje (Statement).

• Po završetku tela petlje (osim ako nije break), uvek se izvršava naredba opisana drugim

neterminalom DesignatorStatement, a zatim ponovo proverava vrednost uslovnog izraza.

ActPars = Expr {ʺ,ʺ Expr}.
• Broj formalnih i stvarnih argumenata metode ili konstruktora mora biti isti.
• Tip svakog stvarnog argumenta mora biti kompatibilan pri dodeli sa tipom svakog formalnog

argumenta na odgovarajućoj poziciji.

Condition = CondTerm {ʺ||ʺ CondTerm}.

CondTerm = CondFact {ʺ&&ʺ CondFact}.

CondFact = Expr Relop Expr.
• Tipovi oba izraza moraju biti kompatibilni.
• Uz promenljive tipa klase ili niza, od relacionih operatora, mogu se koristiti samo != i ==.

Expr = Term.

Expr = ʺ‐ʺ Term.
• Term mora biti tipa int.

Expr = Expr Addop Term.
• Expr i Term moraju biti tipa int. U svakom slučaju, tipovi za Expr i Term moraju biti kompatibilni.

Expr = Condition ʺ?ʺ Expr ʺ:ʺ Expr.

• Drugi i treći izraz moraju biti istog tipa.

• Vrednost operatora se dobija tako što se prvo izračuna vrednost prvog izraza i ako je njegova

vrednost true kao rezultat se uzima vrednost drugog izraza, a ako je njegova vrednost false kao

rezultat se uzima vrednost trećeg izraza.

• U zavisnosti od vrednosti prvog izraza računa se vrednost samo drugog ili samo trećeg izraza.

Expr = CondFact ʺ?ʺ Expr ʺ:ʺ Expr.

• Drugi i treći izraz moraju biti istog tipa.

• Vrednost operatora se dobija tako što se prvo izračuna vrednost prvog izraza i ako je njegova

vrednost true kao rezultat se uzima vrednost drugog izraza, a ako je njegova vrednost false kao

rezultat se uzima vrednost trećeg izraza.

• U zavisnosti od vrednosti prvog izraza računa se vrednost samo drugog ili samo trećeg izraza.

Term = Factor.

Term = Term Mulop Factor.
• Term i Factor moraju biti tipa int.

Factor = Designator | numConst | charConst |boolConst | ʺ(ʺ Expr ʺ)ʺ.

Factor = Designator ʺ(ʺ [ActPars] ʺ)ʺ.
• Designator mora označavati nestatičku metodu unutrašnje klase ili globalnu funkciju glavnog

programa.

Factor = ʺnewʺ Type ʺ[ʺ Expr ʺ]ʺ.
• Tip neterminala Expr mora biti int.

Factor = ʺnewʺ Type ʺ(ʺ [ActPars] ʺ)ʺ.
• Neterminal Type mora da označava klasu (korisnički definisani tip).

Designator = Designator ʺ.ʺ ident .
• Tip neterminala Designator mora biti klasa (ident mora biti ili polje ili metoda objekta označenog

neterminalom Designator) ili nabrajanje (ident mora biti identifikator konstante definisane u okviru

nabrajanja označenog neterminalom Designator).

Designator = Designator ʺ.ʺ length .
• Tip neterminala Designator mora biti niz, gde pristup polju length rezultuje u vraćanju broja

elemenata niza.

Designator = Designator ʺ[ʺ Expr ʺ]ʺ.
• Tip neterminala Designator mora biti niz.
• Tip neterminala Expr mora biti int.

Assignop = ʺ=ʺ.

Operator dodele vrednosti je desno asocijativan.

Relop = ʺ==ʺ | ʺ!=ʺ | ʺ>ʺ | ʺ>=ʺ | ʺ<ʺ | ʺ<=ʺ.

Addop = ʺ+ʺ | ʺ‐ʺ.

Operatori su levo asocijativni.

Mulop = ʺ*ʺ | ʺ/ʺ | ʺ%ʺ.

Operatori su levo asocijativni.

A.5 Implementaciona ograničenja

• Ne sme se koristiti više od 256 lokalnih promenljivih.
• Ne sme se koristiti više od 65536 globalnih promenljivih.
• Klasa ne sme imati više od 65536 polja.
• Izvorni kod programa ne sme biti veći od 8 KB.

7

Dodatak B. MikroJava VM

Ovaj dodatak opisuje arhitekturu MikroJava virtuelne mašine koja se koristi u praktičnom delu kursa

programskih prevodilaca (13E114PP1/13S114PP1) na Elektrotehničkom fakultetu u Beogradu.

MikroJava VM je slična Java VM, ali ima znatno manje instrukcija. Neke instrukcije su takođe

pojednostavljene. Dok kod Java VM punilac razrešava imena operanada iz skladišta konstanti

(constant pool), dotle MikroJava VM koristi fiksne adrese operanada. U instrukcijama Java bajt koda

kodirani su i tipovi njihovih operanada, tako da se može proveriti konzistentnost predmetnog fajla

(object file). Instrukcije MikroJava bajt koda ne kodiraju tipove operanada.

B.1 Organizacija memorije

MikroJava VM koristi sledeće memorijske oblasti:

code

data

heap

pstack

estack

esp

pc

 ra

 free

fp
 dl ExprStack

(niz reči)

sp

 Code StaticData Heap ProcStack

 (niz bajtova) (niz reči) (niz reči) (niz reči)

Code Ova oblast sadrži kod metoda. U registru pc se nalazi indeks instrukcije koja se trenutno

 izvršava. Registar mainpc sadrži početnu adresu metode main().

StaticData U ovoj oblasti se nalaze (statički ili globalni) podaci glavnog programa (npr. klase koju

 kompajliramo). To je u stvari niz promenljivih. Svaka promenljiva zauzima jednu reč (32

 bita). Adrese promenljivih su indeksi pomenutog niza.

Heap Ova oblast sadrži dinamički alocirane objekte i nizove. Blokovi u heap‐u se alociraju

 sekvencijalno. free pokazuje na početak slobodnog dela heap‐a. Dinamički alocirana

 memorija se oslobađa samo na kraju izvršenja programa. Ne postoji sakupljanje đubreta.

 Svako polje unutar objekta zauzima jednu reč (32 bita). Nizovi čiji su elementi tipa char

 su nizovi bajtova. Njihova dužina je umnožak broja 4. Pokazivači su bajt ofseti u heap‐u.

 Objekti tipa niza počinju “nevidljivom” rečju koja sadrži dužinu niza.

ProcStack U ovoj oblasti VM pravi aktivacione zapise pozvanih metoda. Svaki zapis predstavlja niz

 lokalnih promenljivih, pri čemu svaka zauzima jednu reč (32 bita). Adrese promenljivih

 su indeksi niza. ra je povratna adresa metode, dl je dinamička veza (pokazivač na

 aktivacioni zapis pozivaoca metode). Novoalocirani zapis se inicijalizuje nulama.

ExprStack Ova oblast se koristi za skladištenje operanada instrukcija. ExprStack je prazan posle

 svake MikroJava instrukcije. Argumenti metoda se prosleđuju na stek izraza i kasnije

 uklanjaju Enter instrukcijom pozvane metode. Ovaj stek izraza se takođe koristi za

 prosleđivanje povratne vrednosti metode pozivaocu metode.

Svi podaci (globalne promenljive, lokalne promenljive, promenljive na heap‐u) se inicijalizuju null

vrednošću (0 za int, chr(0) za char, null za reference).

B.2 Skup instrukcija

U sledećim tabelama su navedene instrukcije MikroJava VM, zajedno sa njihovim kodovima i

ponašanjem. Treća kolona tabela prikazuje sadržaj ExprStack‐a pre i posle svake instrukcije, na primer

…, val, val

…, val

znači da opisana instrukcija uklanja dve reči sa ExprStack‐a i stavlja novu reč na njega. Operandi

instrukcija imaju sledeće značenje:

b je bajt
s je short int (16 bitova)

w je reč (32 bita).

Promenljive tipa char zauzimaju najniži bajt reči, a za manipulaciju tim promenljivim se koriste

instrukcije za rad sa rečima (npr. load, store). Niz čiji su elementi tipa char predstavlja niz bajtova i sa

njima se manipuliše posebnim instrukcijama.

Instrukcije za load i store lokalnih promenljivih

opcode instr. opds ExprStack značenje

1 load b … Load

…, val push(local[b]);

2..5 load_n … Load (n = 0..3)

 …, val push(local[n]);

6 store b …, val Store

 … local[b] = pop();

7..10 store_n …, val Store (n = 0..3)

 … local[n] = pop();

Instrukcije za load i store globalnih promenljivih

11 getstatic s … Load statičke promenljive

 …, val push(data[s]);

12 putstatic s …, val Store statičke promenljive

 … data[s] = pop();

Instrukcije za load i store polja objekata

13 getfield s …, adr Load polja objekta

adr = pop()/4; push(heap[adr+s]);

 …, val

14 putfield s …, adr, val Store polja objekta

val = pop(); adr = pop()/4;

 …

heap[adr+s] = val;

Instrukcije za load konstanti

15..20 const_n … Load konstante (n = 0..5)

…, val push(n)

21 const_m1 … Load konstante ‐1

 …, ‐1 push(‐1)

22 const w … Load konstante

 …, val push(w)

Aritmetičke operacije

23 add …, val1, val2 Sabiranje

 …, val1+val2 push(pop() + pop());

24 sub …, val1, val2 Oduzimanje

 …, val1‐val2 push(‐pop() + pop());

25 mul …, val1, val2 Množenje

 …, val1*val2 push(pop() * pop());

26 div …, val1, val2 Deljenje

 …, val1/val2 x = pop(); push(pop() / x);

27 rem …, val1, val2 Ostatak pri celobrojnom deljenju

 …, val1%val2 x = pop(); push(pop() % x);

28 neg …, val Promena predznaka

 …, ‐ val push(‐pop());

29 shl …, val Aritmetičko pomeranje ulevo

 …, val1 x = pop(); push(pop() << x);

30 shr …, val Aritmetičko pomeranje udesno

 …, val1 x = pop(); push(pop() >> x);

31 inc b1, b2 … Inkrementiranje

 … local[b1] = local[b1] + b2;

Pravljenje objekata

32 new s … Novi objekat

…, adr alocirati oblast od s bajtova;

 inicijalizovati oblast nulama;

 push(adr(oblast));

33 newarray b …, n Novi niz

 …, adr n = pop();

 if (b==0)

alocirati niz sa n elemenata veličine

bajta;

 else if (b==1)

 alocirati niz sa n elemenata veličine reči;

inicijalizovati niz nulama;

push(adr(niz));

Pristup nizu

34 aload …, adr, index Load elementa niza (+ provera indeksa)

 …, val i = pop(); adr = pop()/4+1;

 push(heap[adr+i]);

35 astore …, adr, index, val Store elementa niza (+ provera indeksa)

 … val = pop(); i = pop(); adr = pop()/4+1;

 heap[adr+i] = val;

36 baload …, adr, index Load elementa niza bajtova (+ provera indeksa)
 …, val i = pop(); adr = pop()/4+1; x
 = heap[adr+i/4]; push(byte

 i%4 of x);

37 bastore …, adr, index, val Store elementa niza bajtova (+ provera indeksa)
 … val = pop(); i = pop(); adr = pop()/4+1;
 x = heap[adr+i/4];
 set byte i%4 in x;

 heap[adr+i/4] = x;

38 arraylength …, adr Dohvatanje dužine niza

 …, len adr = pop();

 push(heap[adr]);

Operacije na steku

39 pop …, val Skidanje elementa sa vrha steka

 … dummy = pop();

40 dup …, val Udvajanje elementa na vrhu steka

 …, val, val x = pop(); push(x); push(x);

41 dup2 …, v1, v2 Udvajanje prva dva elementa na vrhu steka

 …, v1, v2, v1, v2 y = pop(); x = pop();

 push(x); push(y); push(x); push(y);

Skokovi
Adresa skoka je relativna u odnosu na početak instrukcije skoka.

42 jmp s Bezuslovni skok

 pc = pc + s;

43..48 j<cond> s …, val1, val2 Uslovni skok (eq, ne, lt, le, gt, ge)

 … y = pop(); x = pop();

 if (x cond y) pc = pc + s;

 11

Pozivi metoda (PUSH i POP se odnose na stek procedura)

49 call s Poziv metode

 PUSH(pc+3); pc := pc + s;

50 return Povratak iz metode

 pc = POP();

51 enter b1, b2 Početak obrade metode

 psize = b1; lsize = b2; // u rečima

 PUSH(fp); fp = sp; sp = sp + lsize;
 inicijalizovati akt. zapis svim

 nulama;

 for (i=psize‐1; i>=0; i‐‐) local[i] = pop();

52 exit Kraj obrade metode

 sp = fp; fp = POP();

Ulaz/Izlaz

53 read … Operacija čitanja

 …, val readInt(x); push(x);

 // cita sa standardnog ulaza

54 print …, val, width Operacija ispisa

 … width = pop(); writeInt(pop(), width);

 // vrsi ispis na standardni izlaz

55 bread … Operacija čitanja bajta

 …, val readChar(ch); push(ch);

56 bprint …, val, width Operacija ispisa bajta

 … width = pop(); writeChar(pop(), width);

Ostalo

57 trap b Generiše run time grešku

 zavisno od vrednosti b se ispisuje odgovarajuća

 poruka o grešci;

 prekid izvršavanja;

58 invokevirtual w1,w2,...,wn,wn+1 …, adr Poziv virtuelne metode

… ime metode ima n znakova;

ovi znakovi su deo same instrukcije, i nalaze

se u rečima w1,w2,...,wn;

reč wn+1 je jednaka -1 i označava kraj

instrukcije;

instrukcija prvo ukloni adr sa steka izraza;

adr je adresa u statičkoj zoni memorije gde

počinje tabela virtuelnih funkcija za klasu

objekta čija metoda je pozvana;

ako se ime metode u instrukciji pronađe u

tabeli virtuelnih funkcija, instrukcija vrši

skok na početak tela date metode.

Kombinovani operatori

59 dup_x1 ..,val2, val1 …,val1, val2, val1
Umetanje kopije vršne vrednosti ispod druge

vrednosti sa vrha steka izraza.

 vrednost sa vrha steka se kopira i ubacuje

ispod druge vrednosti sa vrha steka izraza.

60 dup_x2 val1, val2, val3 …,val3, val1, val2, val3
Umetanje kopije vršne vrednosti ispod

treće vrednosti sa vrha steka izraza.

… vrednost sa vrha steka se kopira i

ubacuje ispod treće vrednosti sa

vrha steka izraza.

B.3 Format predmetnog fajla

2 bajta: ʺMJʺ
4 bajta: veličina koda u bajtovima
4 bajta: broj reči rezervisan za globalne

podatke
4 bajta: mainPC: adresa

metode main() relativna u

odnosu na početak code

oblasti memorije n

bajtova: code oblast (n =

veličina koda specificirana

u header‐u)

B.4 Runtime greške

1 Nedostaje return iskaz u telu funkcije.

