Dodatak A. Programski jezik MikroJava

Ovaj dodatak opisuje programski jezik MikroJava koji se koristi u prakticnom delu kursa programskih
prevodilaca (13E114PP1, 135114PP1) na Elektrotehnickom fakultetu u Beogradu. Mikrojava je slicna
Javi, ali je mnogo jednostavnija.

A.1 Opste osobine jezika

- MikroJava program pocinje kljunom recju program i ima staticka polja, staticke metode i unutrasnje
klase koje se mogu koristiti kao (korisnicki) tipovi podataka.

- Glavna metoda MikroJava programa se uvek zove main(). Kada se poziva MikroJava
program izvrsava se ta metoda.

- Postoje:

- Celobrojne, znakovne i logicke konstante (int, char, bool).

- Osnovni tipovi: int, bool, char (ASCII), nabrajanja.

- Promenljive: globalne (staticke), lokalne, klasne (polja).

- Promenljive osnovnih tipova sadrZe vrednosti.

- Strukturirani/referencijalni tipovi: jednodimenzionalni nizovi kao u Javi, unutrasnje klase
(apstraktne i konkretne) sa poljima i metodama.

- Promenljive referencijalnih tipova predstavljaju reference (sadrze adrese koje se ne mogu menjati
eksplicitno).

- Staticke metode u programu.

- Staticka polja klasa.

- Ne postoji garbage kolektor (alocirani objekti se samo dealociraju nakon kraja programa).

- Postoji nasledivanje klasa i polimorfizam.

- Postoji redefinisanje metoda.

- Metode unutrasnjih klasa su vezane za instancu i imaju implicitni parametar this (referenca na
instancu klase za koju je pozvana metoda).

- Referenca “this” se implicitno deklarise u metodama unutrasnjih klasa kao prvi formalni argument
tipa reference na klasu kojoj metoda pripada.

- Unutar metoda instance, ime polja odnosi se na polje instance trenutnog objekta, pod
pretpostavkom da polje nije skriveno parametrom metode. Ako je skriveno, mozemo pristupiti polju
instance preko this.fieldName.

- Predeklarisane procedure su ord, chr, len.

- Metoda print ispisuje vrednosti svih osnovnih tipova.

- Od kontrolnih struktura postoji uslovno grananje (if-else), viSestruko grananje (switch) i petlja (for).

Primer programa
program p

const int tableSize = 10;
enum Broj { NULA, JEDAN, TRI = 3, PET = 5}
abstract class Tab {
{
abstract int getp (int idx);
abstract int getn (int idx);

}
class Table extends Tab {
int pos[], negl[], factor;

{

void setfactor (int factor) {this.factor = factor;}
void putp (int a, int idx) { this.pos[idx] = a; }
void putn (int a, int idx) { this.neg[idx] = a; }
int getp (int idx) { return pos[idx]; }
int getn (int idx) { return neg[idx]; }

}
}
Table val;
int rows, columns;
{
void f(char ch, int a, int arg)
int x;
{
X = arg;

}

void main() int x, i; char ¢, int[] arr;

{

val = new Table;
val.setfactor (2);

arr new int[Broj.TRI];

i=20;

for (i = 0; 1 < arr.length; i++)
arr[i] = 1i;
switch (arr([i] - 1) {

case 0: continue;

case 1: print('l'); break;
case 2: print('2'"); break;
print (arr[i]);

}

val.pos = new int [tableSize];
val.neg = new int [tableSize];
read (x) ;

for(i = 0; i < tableSize; i++) {
val.putp (0, 1i);
val.putn(0, 1i);

}

f(c, x, i)

read (rows) ;

for (x=rows; ;) {
if(x <= 0) break;
if (Broj.NULA <= x && x < tableSize)
{

val.putp (val.getp(x)+Broj.JEDAN) ;
}

else 1f (-tableSize < x && x < 0)
{

val.putn (val.getn (-x)+1);
}

read (x) ;

A.2 Sintaksa

Program
ConstDecl

VarDecl

EnumDecl

ClassDecl
AbstractClassDecl
AbstractMethodDecl
MethodDecl
FormPars

Type

Statement

DesignatorStatement
ActPars

Condition
CondTerm
CondFact

Expr

Term
Factor

Designator
Assignop
Relop
Addop
Mulop

Leksicke Strukture
Kljucne reci:

Vrste tokena :

Operatori:
Komentari:

= "program" ident {ConstDecl | VarDecl | ClassDecl | EnumDecl | AbstractClassDecl }
"{" {MethodDecl} "}".

= "const" Type ident"="(numConst | charConst | boolConst) {, ident
charConst | boolConst)} ;"

= Typeident ['[""]"T{"," ident ["[" "]']} "}".

= "enum"ident "{" ident ["'=" numConst] {"," ident ["=" numConst]} "}".
= "class" ident ["extends" Type] "{" {VarDecl} ['{" {MethodDecl} "}"] "}".
= Tabstract" "class" ident ["extends" Type] ["{" {MethodDecl | AbstractMethodDecl ";" }]"}".
= Tabstract" (Type | "void") ident "(" [FormPars] ")".

= (Type | "void") ident "(" [FormPars] ")" {VarDecl} "{" {Statement} "}".
= Typeident ["[""]"] {"," Type ident ["[" "]"]}.

= ident.

n_n

(numConst |

"o

= DesignatorStatement ";

"if" "(" Condition ")" Statement ["else" Statement]
IlbreakH II;H

"nnn

"continue

nn

"return" [Expr] ;

I

I

I

I

| nreadw H(n Designator u)n n;n
I

I

I

I

" non "ouon

print" "(" Expr ["," numConst] ")" ";
"switch" "(" Expr ")" "{" {"case” numConst ":" {Statement} } "}"
"for" "(" [DesignatorStatement] ";" [Condition] ";" [DesignatorStatement] ")" Statement

"{" {Statement} "}".

= Designator (Assignop Expr | "(" [ActPars] ")" | "++" | "--")

= Expr {"," Expr}.

= CondTerm {"I " CondTerm}.

= CondFact {"&&" CondFact}.

= Expr [Relop Expr].

= ["-"] Term {Addop Term}

| CondFact "?" Expr ":" Expr. * za A nivo

| Contition "?" Expr ":" Expr. * za B i C nivo

= Factor {Mulop Factor}.

= Designator ["(" [ActPars] ")"]

| numConst

| charConst

| boolConst

| "new" Type "[" Expr "]"

| "("Expr")".

= ident {"." (ident | "length") | "[" Expr "]"}.

"

— ==IV | IV.=II | II>II | Il>=” | II<II | Il<=Il
n,n non
="+

— "xn | n/n | n%n

program, break, enum, class, abstract, else, const, if, new, print, read,
return, void, extends, continue, for, length, switch, case

ident = letter {letter | digit | "_"}.

numConst = digit {digit}.
charConst = """ printableChar
boolConst = ("true" | "false").
55 %, == 15,>,=, <, <=, &&, ||, =, ++,--,;, ;, zarez, ., (,), [, 1 { }

// do kraja linije

nn

A.3 Semantika

Svi pojmovi u ovom dokumentu, koji imaju definiciju, su podvuceni da bi se naglasilo njihovo posebno
znacenje. Definicije tih pojmova su date u nastavku.

Tip reference
Nizovi i klase su tipa reference.

Tip konstante
- Tip celobrojne konstante (npr. 17) je int.

- Tip znakovne konstante (npr. 'x') je char.
- Tip logicke konstante (npr. true) je bool.

Ekvivalentni tipovi podataka

Dva tipa podataka su ekvivalentna
- ako imaju isto ime, ili
- ako su oba nizovi, a tipovi njihovih elemenata su ekvivalentni.

Kompatibilni tipova podataka

Dva tipa podataka su kompatibilna
- ako su ekvivalentni, ili

- akoje jedan od njih tip reference, a drugi je tipa null.

Kompatibilnost tipova podataka pri dodeli

Tip src je kompatibilan pri dodeli sa tipom dst
- ako su srcidst ekvivalentni

- akoje dst tip reference, a src je tipa null.
- ako je dst referenca na osnovnu klasu, a src referenca na izvedenu klasu

Predeklarisana imena

int tip svih celobrojnih vrednosti

char tip svih znakovnih vrednosti

bool logicki tip

length polje koje vrac¢a duzinu niza

null null vrednost promenljive tipa klase ili (znakovnog) niza simboli¢ki oznacava referencu koja
ne pokazuje ni na jedan podatak

eol - kraj reda karaktera (odgovara znaku '\n'); print(eol) vrsi prelazak u novi red

chr - standardna metoda; chr(i) vrsi konverziju celobrojnog izraza i u karakter (char)

ord - standardna metoda; ord(ch) vrsi konverziju karaktera ch u celobrojnu vrednost (int)

Opseg vazenja

Opseg vaZenja (scope) predstavlja tekstualni doseg metode ili klase. Prostire se od pocetka definicije

metode ili klase do zatvorene velike zagrade na kraju te definicije. Opseg vaZenja ne uklju¢uje imena

koja su deklarisana u opsezima koji su leksicki ugnjezdeni unutar njega. U opsegu se “vide” imena

deklarisana unutar njega i svih njemu spoljasnjih opsega. Pretpostavka je da postoji vestacki globalni

opseg (universe), za koji je glavni program lokalan i koji sadrzi sva predeklarisana imena.

Deklaracija imena u unutrasnjem opsegu S sakriva deklaraciju istog imena u spoljasnjem opsegu.

Napomena

¢ Indirektna rekurzija nije dozvoljena i svako ime mora biti deklarisano pre prvog koriscenja.

® Predeklarisana imena (npr. int ili char) mogu biti redeklarisani u unutrasnjem opsegu (ali to nije
preporucljivo).

A.4 Kontekstni uslovi

Opsti kontekstni uslovi

¢ Svako ime u programu mora biti deklarisano pre prvog koris¢enja.

* Ime ne sme biti deklarisano vise puta unutar istog opsega.

¢ U programu mora postojati metoda sa imenom main. Ona mora biti deklarisana kao void metoda
bez argumenata.

Kontekstni uslovi za standardne metode

chr(e); e mora biti izraz tipa int.
ord(c); c mora biti tipa char.
len(a); a mora biti niz ili znakovni niz.

Kontekstni uslovi za MikroJava smene

Program = "program" ident { ConstDecl | VarDecl | ClassDecl | EnumDecl | AbstractClassDecl }
"{" {MethodDecl} "}".

n_n non

ConstDecl = "const" Type ident "=" (numConst | charConst | boolConst) ";".
* Tip terminala numConst, charConst ili boolConst mora biti ekvivalentan tipu Type.

EnumDecl = "enum" ident "{" ident ["=" numConst] {"," ident ["'=" numConst]} "}".

* Svaka konstanta nabrajanja je tipa int.

* Svakoj od mogucih konstanti koje se definiSu u okviru nabrajanja dodeljuje se celobrojna vrednost
koja mora biti jednistvena u okviru jednog nabrajanja. U odsustvu eksplicitno navedene vrednosti
konstanta dobija vrednost prethodne konstante uvecanu za 1. U slucaju da prethodna konstanta ne
postoji dodeljuje se vrednost 0.

* Konstanti nabrajanja se obavezno pristupa uz navodjenje identifikatora nabrajanja. (Primer:
IdentifikatorNabrajanja. Konstanta)

VarDeCl = Type ident [vl[n n]u] {ll," ident [vv[vv ll]n]} vl;n‘

ClassDecl = "class" ident ['extends" Type] "{" {VarDecl} ['{" {MethodDecl} "}"] "}".

e Tip Type prilikom izvodenja klase iz druge klase mora biti unutrasnja klasa glavnog programa.

¢ Klasa koja nije apstraktna ne sme sadrzati apstrakine metode.

* Ukoliko klasa koja nije apstraktna nasleduje apstrakinu klasu, mora implementirati sve apstraktne
metode.

AbstractClassDecl = "abstract” "class" ident ["extends" Type] ["{" {MethodDecl |
AbstractMethodDecl ;" }1"}".

* Apstrakina klasa moze nasledivati neku drugu apstraktnu ili klasu koja nije apstraktna.
¢ Apstraktna klasa se ne moze instancirati.

MethodDecl = (Type | "void") ident "(" [FormPars] ")" {VarDecl} "{" {Statement} "}".

¢ Ako metoda nije tipa void, mora imati iskaz return unutar svog tela (uslov treba da se proverava u
vreme izvr$avanja programa).

* Globalne funkcije nemaju implicitan parametar this.

AbstractMethodDecl = "abstract” (Type | "void") ident "(" [FormPars] ")".

FormPars = Type ident ['[" "]"] {"," Type ident ["[" "T"]}.

Type = ident.
* ident mora oznacavati tip podataka.

non

Statement = DesignatorStatement ";".

non
.

DesignatorStatement = Designator Assignop Expr ";
* Designator mora oznacavati promenljivu, element niza ili polje unutar objekta.

* Tip neterminala Expr mora biti kompatibilan pri dodeli sa tipom neterminala Designator.

non

DesignatorStatement = Designator ("++" | "--") ";".
* Designator mora oznacavati promenljivu, element niza ili polje objekta unutrasnje klase.
* Designator mora biti tipa int.

DesignatorStatement = Designator "(" [ActPars] ")" ";".
* Designator mora oznacavati nestaticku metodu unutrasnje klase ili globalnu funkciju glavnog
programa.

Statement = "break".
¢ [skaz break se moze koristiti samo unutar for petlje i viSestrukog grananja (switch). Prekida
izvrsavanje neposredno okruzujuce petlje ili case grane viSestrukog grananja (izlazi se iz switch-a).

Statement = "continue".
¢ [skaz continue se moze koristiti samo unutar for petlje. Prekida tekucu iteraciju neposredno
okruzujuce petlje.

"nonn

Statement = "read” "(" Designator ")" ";".
* Designator mora oznacavati promenljivu, element niza ili polje unutar objekta.
* Designator mora biti tipa int, char ili bool.

"nn

Statement = "print" "(" Expr ["," numConst] ")" ";".
* Expr mora biti tipa int, char ili bool.

Statement = "return" [Expr] .

¢ Tip neterminala Expr mora biti ekvivalentan povratnom tipu tekuc¢e metode/ globalne funkcije.
* Ako neterminal Expr nedostaje, tekuca metoda mora biti deklarisana kao void.

* Ne sme postojati izvan tela metoda, odnosno globalnih funkcija.

Statement = "if" "(" Condition ")" Statement ["else” Statement].

* Naredba if — ukoliko je vrednost uslovnog izraza Condition true, izvrsavaju se naredbe u if grani, u
suprotnom izvrSavaju se naredbe u else grani, ako je navedena.

¢ Tip uslovnog izraza Condition mora biti bool.

Statement = "switch" "(" Expr)" "{" {"case" numConst ":" {Statement} } "}".

¢ Expr mora biti celobrojnog tipa.

* Ne sme postojati vise case grana sa istom celobrojnom konstantom.

* Case grane se proveravaju u redosledu navodenja. Kada se naide na case granu ¢ija celobrojna
konstanta odgovara vrednosti Expr zapocinje se izvrSavanje koda.

* Ukoliko se na kraju case grane ne nalazi break naredba, bezuslovno se nastavlja sa izvrSavanjem
koda u narednoj case grani.

* Ne postoji default grana.

* break naredba prekida izvrSavanje tekuce case grane i napusta switch.

continue naredba nema dejstvo na switch, te se u switch-u moze naci samo ukoliko je on ugnjezden
u petlju i u tom slucaju deluje na okruzujucu petlju.

Statement = "for" "(" [DesignatorStatement] ";" [Condition] ";" [DesignatorStatement] ")"
Statement.

Uslovni izraz Condition mora biti tipa bool.

Ako je navedena, prvo se izvrSava naredba opisana prvim neterminalom DesignatorStatement, i to
samo jednom (nije deo cikli¢nog izvrsavanja)

Na pocetku svake iteracije proverava vrednost uslovnog izraza. Ukoliko ne postoji, podrazumeva
se true. Vrednost true omogucava izvrsavanje tela petlje (Statement).

Po zavrsetku tela petlje (osim ako nije break), uvek se izvrSava naredba opisana drugim
neterminalom DesignatorStatement, a zatim ponovo proverava vrednost uslovnog izraza.

ActPars = Expr {"," Expr}.

Broj formalnih i stvarnih argumenata metode ili konstruktora mora biti isti.
Tip svakog stvarnog argumenta mora biti kompatibilan pri dodeli sa tipom svakog formalnog

argumenta na odgovarajucoj poziciji.

Condition = CondTerm {"| |" CondTerm}.

CondTerm = CondFact {"&&" CondFact}.

CondFact = Expr Relop Expr.

Tipovi oba izraza moraju biti kompatibilni.
Uz promenljive tipa klase ili niza, od relacionih operatora, mogu se koristiti samo !=i ==

Expr = Term.

Expr="-" Term.

Term mora biti tipa int.

Expr = Expr Addop Term.

Expr i Term moraju biti tipa int. U svakom slucaju, tipovi za Expr i Term moraju biti kompatibilni.

Expr = Condition "?" Expr ":" Expr.

* Drugi i tredi izraz moraju biti istog tipa.
* Vrednost operatora se dobija tako Sto se prvo izra¢una vrednost prvog izraza i ako je njegova
vrednost true kao rezultat se uzima vrednost drugog izraza, a ako je njegova vrednost false kao

rezultat se uzima vrednost treceg izraza.

e U zavisnosti od vrednosti prvog izraza racuna se vrednost samo drugog ili samo treceg izraza.

Expr = CondFact "?" Expr ":" Expr.

* Drugi i trec¢i izraz moraju biti istog tipa.

* Vrednost operatora se dobija tako $to se prvo izra¢una vrednost prvog izraza i ako je njegova

vrednost true kao rezultat se uzima vrednost drugog izraza, a ako je njegova vrednost false kao
rezultat se uzima vrednost treceg izraza.

* U zavisnosti od vrednosti prvog izraza racuna se vrednost samo drugog ili samo treceg izraza.

Term = Factor.

Term = Term Mulop Factor.

Term i Factor moraju biti tipa int.

Factor = Designator | numConst | charConst |boolConst | "(" Expr ")".

Factor = Designator "(" [ActPars] ")".
* Designator mora oznacavati nestaticku metodu unutrasnje klase ili globalnu funkciju glavnog
programa.

Factor = "new" Type "[" Expr "]".
¢ Tip neterminala Expr mora biti int.

Factor = "new" Type "(" [ActPars] ")".
* Neterminal Type mora da oznacava klasu (korisnicki definisani tip).

Designator = Designator "." ident .

* Tip neterminala Designator mora biti klasa (ident mora biti ili polje ili metoda objekta oznacenog
neterminalom Designator) ili nabrajanje (ident mora biti identifikator konstante definisane u okviru
nabrajanja oznacenog neterminalom Designator).

Designator = Designator "." length .

* Tip neterminala Designator mora biti niz, gde pristup polju length rezultuje u vracanju broja
elemenata niza.

Designator = Designator "[" Expr "]".
¢ Tip neterminala Designator mora biti niz.
* Tip neterminala Expr mora biti int.

Assignop ="=".
Operator dodele vrednosti je desno asocijativan.

"

Relop ="==" | n!=|| | ||>|| I n>=n | n<n | n<=||.

Addop = "+" | "-".
Operatori su levo asocijativni.

Mulop = UF 3L | "/" | "0/0".
Operatori su levo asocijativni.

A.5 Implementaciona ogranicenja

* Ne sme se koristiti vise od 256 lokalnih promenljivih.

* Ne sme se koristiti viSe od 65536 globalnih promenljivih.
¢ Klasa ne sme imati vise od 65536 polja.

¢ Izvorni kod programa ne sme biti veci od 8 KB.

Dodatak B. MikroJava VM

Ovaj dodatak opisuje arhitekturu MikroJava virtuelne masine koja se koristi u prakticnom delu kursa
programskih prevodilaca (13E114PP1/135114PP1) na Elektrotehnickom fakultetu u Beogradu.
MikroJava VM je slicna Java VM, ali ima znatno manje instrukcija. Neke instrukcije su takode
pojednostavljene. Dok kod Java VM punilac razreSsava imena operanada iz skladista konstanti
(constant pool), dotle MikroJava VM koristi fiksne adrese operanada. U instrukcijama Java bajt koda
kodirani su i tipovi njihovih operanada, tako da se moze proveriti konzistentnost predmetnog fajla
(object file). Instrukcije MikroJava bajt koda ne kodiraju tipove operanada.

B.1 Organizacija memorije

MikroJava VM koristi slede¢e memorijske oblasti:

code =

data heap pstack estack

esp

pc

ra
free dl | ExprStack

fp (niz rei)

sp =

Code StaticData Heap ProcStack

(niz bajtova) (niz reci) (niz reci) (niz re¢i)

Code

StaticData

Heap

ProcStack

ExprStack

Ova oblast sadrzi kod metoda. U registru pc se nalazi indeks instrukcije koja se trenutno
izvrsava. Registar mainpc sadrzi pocetnu adresu metode main().

U ovoj oblasti se nalaze (staticki ili globalni) podaci glavnog programa (npr. klase koju
kompajliramo). To je u stvari niz promenljivih. Svaka promenljiva zauzima jednu rec (32
bita). Adrese promenljivih su indeksi pomenutog niza.

Ova oblast sadrzi dinamicki alocirane objekte i nizove. Blokovi u heap-u se alociraju
sekvencijalno. free pokazuje na pocetak slobodnog dela heap-a. Dinamicki alocirana
memorija se oslobada samo na kraju izvrSenja programa. Ne postoji sakupljanje dubreta.
Svako polje unutar objekta zauzima jednu re¢ (32 bita). Nizovi ¢iji su elementi tipa char
su nizovi bajtova. Njihova duzina je umnozak broja 4. Pokazivaci su bajt ofseti u heap-u.
Objekti tipa niza pocinju “nevidljivom” recju koja sadrzi duzinu niza.

U ovoj oblasti VM pravi aktivacione zapise pozvanih metoda. Svaki zapis predstavlja niz
lokalnih promenljivih, pri ¢emu svaka zauzima jednu rec¢ (32 bita). Adrese promenljivih
su indeksi niza. ra je povratna adresa metode, dl je dinamicka veza (pokazivac na
aktivacioni zapis pozivaoca metode). Novoalocirani zapis se inicijalizuje nulama.

Ova oblast se koristi za skladiStenje operanada instrukcija. ExprStack je prazan posle
svake MikroJava instrukcije. Argumenti metoda se prosleduju na stek izraza i kasnije
uklanjaju Enter instrukcijom pozvane metode. Ovaj stek izraza se takode koristi za
prosledivanje povratne vrednosti metode pozivaocu metode.

Svi podaci (globalne promenljive, lokalne promenljive, promenljive na heap-u) se inicijalizuju null
vrednosc¢u (0 za int, chr(0) za char, null za reference).

B.2 Skup instrukcija

U slede¢im tabelama su navedene instrukcije MikroJava VM, zajedno sa njihovim kodovima i
ponasanjem. Treca kolona tabela prikazuje sadrzaj ExprStack-a pre i posle svake instrukcije, na primer

..., val, val
..., val

znaci da opisana instrukcija uklanja dve reci sa ExprStack-a i stavlja novu re¢ na njega. Operandi
instrukcija imaju sledeée znacenje:

b je bajt
s je short int (16 bitova)
w je re€ (32 bita).

Promenljive tipa char zauzimaju najnizi bajt reci, a za manipulaciju tim promenljivim se koriste
instrukcije za rad sa rec¢ima (npr. load, store). Niz ¢iji su elementi tipa char predstavlja niz bajtova i sa
njima se manipuliSe posebnim instrukcijama.

Instrukcije za load i store lokalnih promenljivih

opcode instr. opds ExprStack znacenje
1 load b Load

..., val push(local[b]);
2.5 load_n Load (n=0..3)

..., val push(local[n]);
6 store b ..., val Store

local[b] = pop();

7..10 store_n ..., val Store (n=0..3)

local[n] = pop();

Instrukcije za load i store globalnih promenljivih

11 getstatic s Load staticke promenljive
..., val push(datals]);
12 putstatic s ..., val Store staticke promenljive

datals] = pop();

Instrukcije za load i store polja objekata

13 getfield s ...,adr Load polja objekta
..., val adr = pop()/4; push(heap[adr+s]);
14 putfield s ..., adr, val Store polja objekta

val = pop(); adr = pop()/4;
heap[adr+s] = val;

Instrukcije za load konstanti

15.20 const n Load konstante (n =0..5)
..., val push(n)

21 const_m1 Load konstante -1
| push(-1)

22 const w Load konstante
..., val push(w)

Aritmeticke operacije

23 add eey Vall, Va12 Sabiranje
..., vall+val2 push(pop() + pop());
24 sub ..., vall, val2 Oduzimanje
..., vall-val2 push(-pop() + pop());
25 mul ..., vall, val2 MnozZenje
..., vall*val2 push(pop() * pop());
26 div ..., vall, val2 Deljenje
..., vall/val2 x = pop(); push(pop() / x);
27 rem ..., vall, val2 Ostatak pri celobrojnom deljenju
..., vall%val2 x = pop(); push(pop() % x);
28 neg ..., val Promena predznaka
..., -val push(-pop());
29 shl ..., val Aritmeticko pomeranje ulevo
..., vall x = pop(); push(pop() << x);
30 shr ..., val Aritmeticko pomeranje udesno
..., vall x = pop(); push(pop() >> x);
31 inc b1, b2 Inkrementiranje

local[b1] = local[b1] + b2;

Pravljenje objekata

32 new s .. Novi objekat
...,adr alocirati oblast od s bajtova;

inicijalizovati oblast nulama;
push(adr(oblast));

33 newarray b .., Novi niz
...,adr n=pop();

if (b==0)
alocirati niz sa n elemenata veli¢ine
bajta;

else if (b==1)
alocirati niz sa n elemenata velicine redi;
inicijalizovati niz nulama;

push(adr(niz));

Pristup nizu

34 aload ..., adr, index Load elementa niza (+ provera indeksa)
..., val i=pop(); adr = pop()/4+1;
push(heap[adr+i]);
35 astore ..., adr, index, val Store elementa niza (+ provera indeksa)

val = pop(); i = pop(); adr = pop()/4+1;
heap[adr+i] = val;

36 baload ..., adr, index Load elementa niza bajtova (+ provera indeksa)
..., val i=pop(); adr = pop()/4+1; x
= heap[adr+i/4]; push(byte
i%4 of x);
37 bastore ..., adr, index, val Store elementa niza bajtova (+ provera indeksa)

val = pop(); i = pop(); adr = pop()/4+1;
x = heap[adr+i/4];

set byte i%4 in x;

heap[adr+i/4] = x;

38 arraylength ..., adr Dohvatanje duzine niza
..., len adr = pop();
push(heap[adr]);

Operacije na steku

39 pop ..., val Skidanje elementa sa vrha steka
dummy = pop();
40 dup ..., val Udvajanje elementa na vrhu steka
..., val, val x = pop(); push(x); push(x);
41 dup2 e, vl v2 Udvajanje prva dva elementa na vrhu steka
ey V1, v2,v1,v2 y =pop(); x =pop();

push(x); push(y); push(x); push(y);

Skokovi
Adresa skoka je relativna u odnosu na pocetak instrukcije skoka.

42 jmp s Bezuslovni skok
pc=pc+s;
43.48 j<cond> s ..., vall, val2 Uslovni skok (eq, ne, 1t, le, gt, ge)

y = pop(); x = pop();
if (x cond y) pc=pc +s;
11

Pozivi metoda (PUSH i POP se odnose na stek procedura)

49 call S Poziv metode
PUSH(pc+3); pc:=pc+s;

50 return Povratak iz metode
pc=POP();

51 enter bl, b2 Pocetak obrade metode
psize =bl; Isize=b2; // u retima
PUSH(fp); fp = sp; sp = sp + Isize;
inicijalizovati akt. zapis svim
nulama;
for (i=psize-1; i>=0; i--) local[i] = pop();

52 exit Kraj obrade metode
sp = fp; fp = POP();

Ulaz/Izlaz
53 read Operacija Citanja
..., val readInt(x); push(x);
/I cita sa standardnog ulaza
54 print ..., val, width Operacija ispisa
width = pop(); writeInt(pop(), width);
/1 vrsi ispis na standardni izlaz
55 bread Operacija Citanja bajta
..., val readChar(ch); push(ch);
56 bprint ..., val, width Operadija ispisa bajta
width = pop(); writeChar(pop(), width);
Ostalo
57 trap b GenerisSe run time gresku
zavisno od vrednosti b se ispisuje odgovarajuca
poruka o gresci;
prekid izvrSavanja;
58 invokevirtual wi,wo,...,wnwns1 ..., adr Poziv virtuelne metode

ime metode ima n znakova;

ovi znakovi su deo same instrukcije, i nalaze
se u re¢ima wWi,wa,...,Wn;

re¢ wn je jednaka -1 i oznacava kraj
instrukcije;

instrukcija prvo ukloni adr sa steka izraza;
adr je adresa u statickoj zoni memorije gde
pocinje tabela virtuelnih funkcija za klasu
objekta c¢ija metoda je pozvana;

ako se ime metode u instrukciji pronade u
tabeli virtuelnih funkcija, instrukcija vrsi
skok na pocetak tela date metode.

Kombinovani operatori
Umetanje kopije vrSne vrednosti ispod druge
59 dup_x1 .,val2, vall ...vall, val2, vall vrednosti sa vrha steka izraza.
vrednost sa vrha steka se kopira i ubacuje
ispod druge vrednosti sa vrha steka izraza.

Umetanje kopije vrsne vrednosti ispod
60 dup_x2 vall, val2, val3 ...,val3, vall, val2, val3 treée vrednosti sa vrha steka izraza.
vrednost sa vrha steka se kopira i
ubacuje ispod trece vrednosti sa
vrha steka izraza.

B.3 Format predmetnog fajla

2 bajta: "M]J"

4 bajta: velic¢ina koda u bajtovima

4 bajta: broj reci rezervisan za globalne
podatke

4 bajta: mainPC: adresa

metode main() relativna u

odnosu na pocetak code

oblasti memorije n

bajtova: code oblast (n =

veli¢ina koda specificirana

u header-u)

B.4 Runtime greske

1 Nedostaje return iskaz u telu funkcije.

